

LABOR SAFETY TRAINING

MATERIALS FOR THE MECHANICAL **INDUSTRY**

This training document equips workers with safety knowledge and preventive measures against hazards when operating various mechanical machines in close proximity to moving parts.

PART 1: GENERAL INTRODUCTION TO MACHINERY AND MECHANICAL TOOLS

A. TYPES OF MACHINE TOOLS USED IN ACTUAL PRODUCTION

1. Lathe in Mechanical Safety Documentation

- Workpieces must be clamped securely using fixtures such as chucks, tailstocks, etc.
- When turning fast-spinning parts, the center of the tailstock must be rotating.
- For long workpieces, a steady rest is required to prevent them from flying off due to centrifugal force.
- o If the workpiece extends too long and protrudes from the gearbox, a support stand must be used to prevent bending.
- o Filing sharp edges during turning is not allowed as it may cause accidents.
- To prevent long chips from forming, the turning tool should have an appropriate chip breaker angle.

2. Milling Machine in Mechanical Safety Documentation

- Even though milling has lower cutting speeds than turning, safety must still be a priority.
- o Screws on the milling table, dividing head, and other parts must be well-covered.
- o Specialized clamps should be used when mounting or removing the milling cutter.
- o Hands must not be placed near the active cutter.
- The flywheel brake mechanism of the milling machine must operate efficiently and safely.

3. Drilling Machine in Mechanical Safety Documentation

- o The drill bit must be securely clamped and aligned with the spindle.
- o Workpieces should be clamped directly or via fixtures on the drilling table.
- o Never use hands to hold the workpiece or wear gloves while drilling.
- When chips wrap around the drill bit, do not remove them with your hands.

4. Grinding Machine in Mechanical Safety Documentation

- o Grinding machines have high speeds (20-30 m/s), and high-speed grinding can reach 50 m/s.
- o Grinding wheels are made of hard materials bonded from fine powders, but they are brittle and cannot withstand impact and vibration.
- o Grinding wheels must be stored in dry places, away from acids and corrosive substances.
- o Grinding wheels with magnesium bonding should not be used if stored for more than a year.
- o Grinding wheel selection must match the technical requirements of the machining process.
- o Steel hammers must not be used for adjusting the grinding wheel.

- o Grinding wheels must be clamped evenly between equal-sized flanges with a layer of elastic material in between.
- Dynamic balancing and mechanical strength tests must be performed on grinding wheels before use.

5. Planer in Mechanical Safety Documentation

- o Planers must have controlled stroke lengths for the cutting tool.
- o Moving parts like gears and racks must be shielded.
- o Workpieces must not be adjusted while the machine is running.
- o Do not pass in front of the machine during operation.

B. STRUCTURE AND OPERATING PRINCIPLES OF EACH TYPE OF EQUIPMENT

1. Lathe in Mechanical Safety Documentation

- Structure of the Lathe: Describes the high-speed lathe, divided into four main parts: base, gearbox, tool carriage, and tailstock.
- Operating Principle of the Lathe: Involves the rotation of the workpiece and the linear motion of the cutting tool.

2. Milling Machine in Mechanical Safety Documentation

- Structure of the Milling Machine: Includes parts like the base, column, knee, table, spindle, and overarm.
- o **Operating Principle of the Milling Machine**: Involves the rotation of the milling cutter and the movement of the workpiece.

3. Drilling Machine in Mechanical Safety Documentation

o **Technical Characteristics of Rock Drilling Machines**: Details specifications and operation of hydraulic-driven rock drills.

4. Grinding Machine in Mechanical Safety Documentation

• Types of Grinding Machines: Covers cylindrical and surface grinders, including various grinding techniques.

5. Planers and Shapers in Mechanical Safety Documentation

- Planer Types: Discusses horizontal, vertical, and special planers for different machining tasks.
- Shaper Operating Principles: Describes the linear reciprocating motion for cutting surfaces.

C. SAFETY STANDARDS AND REGULATIONS FOR EQUIPMENT OPERATORS

1. General Regulations

- o Applies to handheld motor-operated electric tools with specified voltage limits.
- Excludes tools used in hazardous environments, for food processing, medical purposes, or in transportation.

2. Technical Requirements

Tools must meet safety standards as specified in TCVN 7996-1:2009 (IEC 60745-1:2006) and specific parts of TCVN 7996.

PART 2: BASIC TECHNICAL CHARACTERISTICS OF EACH EQUIPMENT

A. BASIC TECHNICAL CHARACTERISTICS OF CONSTRUCTION MACHINERY -

Concrete Mixers: Structure, working principles, and productivity. - **Concrete Vibrators**: Types, characteristics, and applications. - **Crushers and Screeners**: Describes combined crushing and screening stations used on construction sites.

B. BASIC TECHNICAL CHARACTERISTICS OF MECHANICAL MACHINERY -

Lathes: Operating principles and technological capabilities. - **Drilling Machines**: Types, working principles, and technological applications. - **Milling Machines**: Types, operating principles, and technological applications. - **Planers and Shapers**: Working principles and technological capabilities. - **Reamers**: Used for fine-tuning pre-drilled holes.

PART 3: OPERATING PROCEDURES

A. EQUIPMENT CHECKS AND PREPARATIONS BEFORE OPERATION

1. Operational Procedures

- Develop procedures for situations where guards need to be removed or safety devices are not in operation.
- Procedures must include steps for checking and testing machinery without guards for maintenance purposes.
- Ensure proper lockout/tagout (LOTO) procedures are in place to prevent accidental start-up during maintenance.

2. Safety Awareness and Training

- Workers must be trained on recognizing hazards associated with operating machinery.
- Emphasize the importance of wearing personal protective equipment (PPE) and following safety protocols.
- Conduct regular safety briefings and visual demonstrations to maintain high awareness.

3. Maintenance and Repair Procedures

- o Conduct regular inspections to ensure machinery is in good working condition.
- Follow a maintenance schedule to prevent unexpected breakdowns and ensure safety devices are functioning.
- o Document all maintenance activities and repairs performed on machinery.

B. SPECIFIC SAFETY MEASURES FOR DIFFERENT MACHINERY

1. Lathe

- o Ensure workpieces are securely clamped before starting the machine.
- o Use appropriate cutting tools and ensure they are properly installed.
- o Do not leave the machine running unattended.

2. Milling Machine

- Verify that the cutting tools are securely mounted.
- o Ensure the workpiece is properly clamped and aligned.
- o Use guards and shields to protect against flying chips and debris.

3. **Drilling Machine**

- o Secure the drill bit and ensure it is properly aligned with the spindle.
- o Clamp workpieces securely to prevent movement during drilling.
- o Avoid wearing loose clothing or gloves that can get caught in the machine.

4. Grinding Machine

- o Inspect grinding wheels for cracks or damage before use.
- o Ensure wheels are properly balanced and securely mounted.
- o Use protective shields and wear appropriate PPE to guard against flying particles.

5. Planers and Shapers

- o Check that all moving parts are properly lubricated and in good condition.
- o Ensure the workpiece is securely clamped before operation.
- Use guards to protect against moving parts and flying debris.

C. HAZARDOUS AND HARMFUL FACTORS WHEN WORKING WITH MACHINERY

1. Types of Accidents

- o Slips, trips, and falls.
- o Crushing or impact injuries from collapsing or falling objects.
- Burns from hot materials or surfaces.
- Electrical shocks.
- Puncture wounds from sharp objects.
- o Entanglement of clothing or hair in moving parts.
- Injuries from flying chips or debris.

2. Causes of Accidents

- Inadequate or missing safety guards.
- Faulty safety devices.
- Malfunctioning control systems.
- Violation of safety standards and regulations.
- o Poor housekeeping and cluttered work areas.
- o Insufficient lighting and ventilation.
- Poorly maintained machinery and equipment.

D. PRINCIPLES FOR ENSURING SAFETY IN MECHANICAL OPERATIONS

1. General Principles

- o Adhere to all safety and hygiene regulations during the design, manufacture, installation, use, and maintenance of machinery.
- o Identify hazardous areas and potential risks associated with machinery.
- o Implement appropriate safety measures.
- o Organize the workspace to ensure safety and efficiency.

2. Safety Principles for Machine Operation

- o Only authorized personnel should operate machinery.
- o Check safety devices and ensure they are in place before starting the machine.
- o Do not leave machinery running unattended.
- o Follow lockout/tagout procedures during maintenance.

3. Guidelines for Safe and Efficient Machinery Operation

- o Choose machines that are safe and easy to operate.
- o Ensure all moving parts are properly guarded.
- o Use automatic stops or two-handed controls where necessary.
- Implement safe material handling procedures to increase productivity and reduce risks.
- o Regularly maintain and inspect machines to ensure safety and efficiency.
- Use appropriate PPE for all operations.
- Display clear warning signs in hazardous areas.
- o Ensure electrical systems are safe and comply with regulations.
- o Implement fire prevention measures.

E. DEVELOPING SAFE OPERATING PROCEDURES

1. Establishing Safe Operating Procedures

- Develop clear procedures for safe machine operation, including startup and shutdown processes.
- Ensure all workers are trained on these procedures and understand the importance of following them.
- Regularly review and update procedures to reflect any changes in equipment or regulations.

2. Implementing Safety Measures

- Use barriers, warning signs, and guards to prevent unauthorized access to hazardous areas.
- Conduct regular safety audits to identify potential hazards and implement corrective actions.
- Encourage a culture of safety by involving workers in safety planning and decision-making.

PART 4: TECHNICAL REQUIREMENTS AND STANDARDS

A. NATIONAL TECHNICAL REGULATIONS ON SAFETY FOR HANDHELD MOTOR-OPERATED ELECTRIC TOOLS (QCVN 09:2012/BLDTBXH)

1. Scope of Application

- o Applies to handheld electric tools with a nominal voltage not exceeding 250V for single-phase AC/DC tools, and 440V for three-phase AC tools.
- o Includes tools that can be mounted on stands or bases for fixed use without altering the tool itself.

2. Exclusions

- o Tools designed for special environments such as explosive atmospheres.
- o Tools used for food processing or medical purposes.
- o Heating tools covered by TCVN 5699-2-45 (IEC 60335-2-45).
- o Tools designed for use on transportation vehicles, which must comply with additional safety requirements.

3. Technical Requirements

- Handheld electric tools must meet safety standards as specified in TCVN 7996-1:2009 (IEC 60745-1:2006) and relevant parts of TCVN 7996 Part 2.
- o Updates to these standards must be adhered to as per the latest regulations.

4. General Provisions

- o The scope includes manufacturers, importers, distributors, and users of handheld motor-operated electric tools.
- Regulatory authorities and related organizations must also comply with these standards.

5. **Definitions**

 Terms used in this regulation follow the definitions provided in the National Standard TCVN 7996-1:2009 (IEC 60745-1:2006) and related standards in the TCVN 7996 series.

PART 5: SAFETY REQUIREMENTS FOR SPECIFIC MACHINERY

A. SAFETY REQUIREMENTS FOR CONSTRUCTION MACHINERY

1. Concrete Mixers

- Structure and components: mixing drum, motor, gearbox, frame, and safety guards.
- Operating principle: The drum rotates, mixing the components to produce concrete.
- o Safety precautions: Ensure the mixer is stable, do not reach into the drum while it is rotating, and use appropriate PPE.

2. Concrete Vibrators

- o Types: Internal (immersed) vibrators, surface vibrators, and form vibrators.
- o Operating principle: Vibrations compact the concrete, removing air bubbles and ensuring a solid structure.
- Safety precautions: Securely handle the vibrator, avoid prolonged exposure to vibrations, and use ear protection.

3. Crushers and Screeners

- Combined crushing and screening stations: Used on construction sites for producing aggregate materials.
- Operating principle: Crushers break down large rocks, and screeners sort the material by size.

o Safety precautions: Regularly check and maintain machinery, ensure guards are in place, and wear appropriate PPE.

B. SAFETY REQUIREMENTS FOR MECHANICAL MACHINERY

1. Lathes

- o Structure: Headstock, bed, carriage, tailstock.
- Operating principle: The workpiece rotates while the cutting tool moves along it to shape the material.
- Safety precautions: Secure the workpiece, use appropriate cutting speeds, and wear safety goggles.

2. **Drilling Machines**

- o Types: Bench drills, vertical drills, radial drills, multi-spindle drills, and deep-hole drills
- Operating principle: The drill bit rotates and moves into the workpiece, creating holes.
- Safety precautions: Secure workpieces, do not wear loose clothing or gloves, and ensure proper alignment of the drill bit.

3. Milling Machines

- o Structure: Base, column, knee, table, spindle, overarm.
- o Operating principle: The milling cutter rotates, and the workpiece is fed into it to create the desired shape.
- Safety precautions: Secure workpieces, use proper cutting tools, and ensure all guards are in place.

4. Planers and Shapers

- o Types: Horizontal planers, vertical planers, shapers.
- Operating principle: The cutting tool moves in a straight line, shaving material from the workpiece.
- Safety precautions: Secure workpieces, ensure proper lubrication of moving parts, and wear appropriate PPE.

5. Grinding Machines

- o Types: Cylindrical grinders, surface grinders.
- o Operating principle: The grinding wheel rotates, and the workpiece is brought into contact with it to remove material.
- Safety precautions: Inspect grinding wheels for damage, balance wheels before use, and use shields to protect against debris.

PART 6: RISK MANAGEMENT AND ACCIDENT PREVENTION

A. COMMON ACCIDENTS IN MECHANICAL OPERATIONS

1. Types of Accidents

- o Slips, trips, and falls.
- o Crushing injuries from falling objects.

- Burns from hot surfaces or materials.
- o Electrical shocks.
- o Cuts and puncture wounds from sharp objects.
- o Entanglement in moving parts.
- o Injuries from flying chips or debris.

2. Causes of Accidents

- o Inadequate or missing safety guards.
- o Faulty or missing safety devices.
- Malfunctioning control systems.
- Violation of safety standards and regulations.
- o Poor housekeeping and cluttered work areas.
- o Insufficient lighting and ventilation.
- o Poorly maintained machinery and equipment.

B. PRINCIPLES FOR ENSURING SAFETY IN MECHANICAL OPERATIONS

1. General Principles

- Comply with all safety and hygiene regulations from design to operation and maintenance.
- o Identify hazardous areas and potential risks associated with machinery.
- o Implement appropriate safety measures.
- o Organize the workspace to ensure safety and efficiency.

2. Safety Principles for Machine Operation

- o Only authorized personnel should operate machinery.
- o Check safety devices and ensure they are in place before starting the machine.
- o Do not leave machinery running unattended.
- o Follow lockout/tagout procedures during maintenance.

3. Guidelines for Safe and Efficient Machinery Operation

- o Choose machines that are safe and easy to operate.
- o Ensure all moving parts are properly guarded.
- Use automatic stops or two-handed controls where necessary.
- Implement safe material handling procedures to increase productivity and reduce risks.
- o Regularly maintain and inspect machines to ensure safety and efficiency.
- Use appropriate PPE for all operations.
- o Display clear warning signs in hazardous areas.
- o Ensure electrical systems are safe and comply with regulations.
- Implement fire prevention measures.

C. DEVELOPING SAFE OPERATING PROCEDURES

1. Establishing Safe Operating Procedures

 Develop clear procedures for safe machine operation, including startup and shutdown processes.

- Ensure all workers are trained on these procedures and understand the importance of following them.
- Regularly review and update procedures to reflect any changes in equipment or regulations.

2. Implementing Safety Measures

- Use barriers, warning signs, and guards to prevent unauthorized access to hazardous areas.
- o Conduct regular safety audits to identify potential hazards and implement corrective actions.
- Encourage a culture of safety by involving workers in safety planning and decision-making.

PART 7: EMERGENCY RESPONSE AND INCIDENT REPORTING

A. EMERGENCY RESPONSE PROCEDURES

1. Preparation

- o Develop and implement an emergency response plan.
- Train all workers on emergency procedures, including evacuation routes and emergency contacts.
- Conduct regular drills to ensure readiness.

2. **Response**

- o In case of an emergency, follow the established response plan.
- Use emergency equipment such as fire extinguishers, first aid kits, and spill containment materials.
- o Report the emergency to the appropriate authorities and follow their instructions.

B. INCIDENT REPORTING AND INVESTIGATION

1. **Reporting**

- o All incidents, including near misses, must be reported immediately.
- Use standardized forms to document the details of the incident.

2. Investigation

- o Conduct a thorough investigation to determine the root cause of the incident.
- o Implement corrective actions to prevent recurrence.
- Share the findings with all relevant personnel to promote learning and improvement.

3. Follow-Up

- o Monitor the implementation of corrective actions to ensure they are effective.
- Review incident reports and investigation findings regularly to identify trends and prevent future incidents.
- o Communicate lessons learned and safety improvements to all employees.

PART 8: TRAINING AND COMPETENCY DEVELOPMENT

A. TRAINING PROGRAMS

1. Initial Training

- o Provide comprehensive safety training for all new employees, covering general safety principles and specific procedures for their roles.
- o Include practical demonstrations and hands-on training to ensure understanding.

2. Ongoing Training

- Conduct regular refresher training sessions to keep employees updated on safety procedures and new regulations.
- Provide additional training for employees who are assigned new tasks or operate new equipment.

3. Specialized Training

- Offer specialized training for employees who work with particularly hazardous machinery or in high-risk environments.
- Include advanced topics such as lockout/tagout procedures, confined space entry, and chemical handling.

B. COMPETENCY ASSESSMENT

1. Certification

- Require employees to pass competency assessments to demonstrate their understanding of safety procedures and their ability to perform tasks safely.
- Provide certification for employees who successfully complete training programs and assessments.

2. Performance Monitoring

- Regularly evaluate employee performance to ensure continued compliance with safety procedures.
- o Provide feedback and additional training as needed to address any deficiencies.

C. RECORD KEEPING

1. Training Records

- Maintain detailed records of all training sessions, including attendance, topics covered, and assessments completed.
- Ensure that records are up to date and easily accessible for review by regulatory authorities.

2. Incident Records

- o Keep comprehensive records of all incidents, investigations, and corrective
- o Use these records to identify trends and improve safety procedures.

PART 9: SAFETY COMMUNICATION AND AWARENESS

A. COMMUNICATION STRATEGIES

1. Safety Meetings

- Hold regular safety meetings to discuss potential hazards, review incidents, and share best practices.
- o Encourage open communication and employee participation in safety discussions.

2. Bulletins and Signage

- Use safety bulletins and signage to provide ongoing reminders of important safety procedures and hazard warnings.
- Place signs in high-risk areas to reinforce the importance of following safety protocols.

B. PROMOTING A SAFETY CULTURE

1. Leadership Commitment

- Ensure that management demonstrates a strong commitment to safety by leading by example and prioritizing safety in all decision-making.
- o Provide resources and support for safety initiatives.

2. Employee Involvement

- Encourage employees to take an active role in promoting safety by participating in safety committees, reporting hazards, and suggesting improvements.
- o Recognize and reward employees who contribute to a safer workplace.

3. Continuous Improvement

- Regularly review and update safety procedures to reflect new regulations, technologies, and best practices.
- Foster a culture of continuous improvement where safety is viewed as an ongoing process.

PART 10: COMPLIANCE AND AUDIT

A. REGULATORY COMPLIANCE

1. Understanding Regulations

- Stay informed about relevant safety regulations and standards that apply to your industry and operations.
- o Ensure that all safety procedures and equipment comply with these regulations.

2. Internal Audits

- Conduct regular internal audits to assess compliance with safety procedures and identify areas for improvement.
- Use audit findings to implement corrective actions and improve overall safety performance.

B. EXTERNAL AUDITS

1. Third-Party Audits

- Engage third-party auditors to conduct independent assessments of your safety programs and procedures.
- Use the results of these audits to benchmark your performance against industry standards and identify best practices.

2. Regulatory Inspections

- o Prepare for inspections by regulatory authorities by ensuring that all safety procedures and records are up to date and in compliance.
- o Cooperate fully with inspectors and promptly address any issues identified.

C. CONTINUOUS MONITORING AND REVIEW

1. Performance Metrics

- Develop and track key performance indicators (KPIs) related to safety, such as incident rates, near misses, and compliance levels.
- o Use these metrics to monitor progress and identify areas for improvement.

2. Feedback and Improvement

- Regularly solicit feedback from employees on safety procedures and potential hazards.
- Use this feedback to make continuous improvements to your safety programs and procedures.